天才教育網(wǎng)合作機構 > 北京英語培訓機構 > 北京GMAT培訓機構 >

天才領路者

歡迎您!
朋友圈

400-850-8622

全國統(tǒng)一學習專線 9:00-21:00

位置:北京英語培訓問答 > 北京GMAT培訓問答 > GMAT數(shù)學思維-gmat總分

GMAT數(shù)學思維-gmat總分

日期:2019-08-29 14:41:20     瀏覽:361    來源:天才領路者
核心提示: 今天小編為大家?guī)鞧MAT數(shù)學需要掌握的思維,希望對大家GMAT備考有所幫助。接下來跟小編一起來看看吧。

  今天小編為大家?guī)鞧MAT數(shù)學需要掌握的思維,希望對大家GMAT備考有所幫助。接下來跟小編一起來看看吧。   1:換元思想   換元法又稱變量替換法,即根據(jù)所要求解的式子的結構特征,巧妙地設置新的變量來替代原來表達式中的某些式子或變量,對新的變量求出結果后,返回去再求出原變量的結果。 換元法通過引入新的變量,將分散的條件聯(lián)系起來,使超越式化為有理式、高次式化為低次式、隱性關系式化為顯性關系式,從而達到化繁為簡、變未知為已知的目的。   2:數(shù)形結合思想   數(shù)形結合的思想,其實質是將抽象的數(shù)學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數(shù)形結合的轉化,可以培養(yǎng)思維的靈活性,形象性,使問題化難為易,化抽象為具體,通過“形”往往可以解決用“數(shù)”很難解決的問題。   3:轉化與化歸思想   所謂轉化與化歸思想方法,就是在研究和解決有關數(shù)學問題時,采用某種手段將問題通過變換使之轉化,進而達到解決的一種方法。一般總是將復雜的問題通過轉化為簡單的問題,將難解的問題通過變換轉化為容易的問題,將未解決的問題變換轉化為已解決的問題。   轉化與化歸的思想方法是數(shù)學基本的思想方法。數(shù)學中一切問題的解決都離不開轉化與化歸,數(shù)形結合思想體現(xiàn)了數(shù)與形的相互轉化;函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉化;分類討論思想體現(xiàn)了局部與整體的相互轉化,以上三種思想方法都是轉化與化歸思想的具體體現(xiàn)。各種變換法、分析法、反證法、待定系數(shù)法、構造法等都是轉化的手段,所以說轉化與化歸是數(shù)學思想方法的靈魂。   4:函數(shù)與方程思想   函數(shù)思想指運用函數(shù)的概念和性質,通過類比、聯(lián)想、轉化、合理地構造函數(shù),然后去分析、研究問題,轉化問題和解決問題。方程思想是通過對問題的觀察、分析、判斷等一系列的思維過程中,具備標新立異、獨樹一幟的深刻性、獨創(chuàng)性思維,將問題化歸為方程的問題,利用方程的性質、定理,實現(xiàn)問題與方程的互相轉化接軌,達到解決問題的目的。

GMAT數(shù)學思維 gmat總分

  5:分類討論思想   所謂分類討論,就是當問題所給的對象不能進行統(tǒng)一研究時,我們就需要對研究的對象進行分類,然后對每一類分別研究,得出每一類的結論,末尾綜合各類的結果得到整個問題的解答.實質上分類討論是 “化整為零,各個擊破,再積零為整”的策略. 分類討論時應注重理解和掌握分類的原則、方法與技巧、做到“確定對象的全體,明確分類的標準,分層別類不重復、不遺漏的分析討論.”

免責聲明:本信息由用戶發(fā)布,本站不承擔本信息引起的任何交易及知識產(chǎn)權侵權的法律責任!

如果本頁不是您要找的課程,您也可以百度查找一下: